Vahvistava oppiminen (5 op)
Toteutuksen tunnus: R504D121-3001
Toteutuksen perustiedot
- Ilmoittautumisaika
- 01.10.2024 - 31.12.2024
- Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
- 17.02.2025 - 02.05.2025
- Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Insinöörikoulutus, tieto- ja viestintätekniikka
- Opetuskielet
- englanti
- Paikat
- 0 - 30
- Opettajat
- Tuomas Valtanen
- Vastuuopettaja
- Tuomas Valtanen
- Ryhmät
-
R54D22SBachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2022
- Opintojakso
- R504D121
Arviointiasteikko
H-5
Sisällön jaksotus
Basics of reinforcement learning concepts (including exploration and exploitation)
Common reinforcement learning methods and processes
Policies: evaluation, improvement, iteration
Conventional Reinforcement learning
Deep Reinforcement Learning
Tavoitteet
You understand the core principles behind reinforcement learning
You understand the differences of reinforcement learning regarding classic machine learning and conventional deep learning
You can use conventional reinforcement learning solutions to create an AI that functions in a limited moving space
You can use deep learning methods in order to create situational reinforcement learning solutions
You can share your results and exercises via a version control system.
Sisältö
Basics of reinforcement learning concepts (including exploration and exploitation)
Markov Decision Processes, Monte Carlo Methods, Bellman Equation
Policies: evaluation, improvement, iteration
Conventional Reinforcement learning
Deep Reinforcement Learning
Aika ja paikka
Lapland University of Applied Sciences, Rantavitikka Campus, 13.1.2025 - 15.5.2025.
Opetusmenetelmät
Lectures, workshops, examples, exercises and self-supervised work.
Tenttien ajankohdat ja uusintamahdollisuudet
The course will be graded based on personal work and exercises.
Arviointikriteerit, tyydyttävä (1)
You can create a simple reinforcement application
You are aware of the basic principles behind reinforcement learning
You understand the difference of reinforcement learning when compared to other conventional machine learning technologies
You can share your results and exercises via a version control system.
Arviointikriteerit, hyvä (3)
You can create various reinforcement applications, using both conventional methods and deep learning methods
You understand the basic principles behind reinforcement learning on the general level
You understand the difference of reinforcement learning when compared to other conventional machine learning technologies
You can share your results and exercises via a version control system.
Arviointikriteerit, kiitettävä (5)
You can create various reinforcement applications, using both conventional methods and deep learning methods
You understand the basic principles behind reinforcement learning on the general level
You understand the difference of reinforcement learning when compared to other conventional machine learning technologies
You can optimize your reinforcement learning applications to improve performance
You can share your results and exercises via a version control system.
Esitietovaatimukset
Basics of programming
Basics of Python data analytics modules/libraries
Basics of conventional machine learning methods
Basics of Deep Learning