Siirry suoraan sisältöön

Edistyneet koneoppimisen menetelmät (5 op)

Toteutuksen tunnus: R504D108-3001

Toteutuksen perustiedot


Ilmoittautumisaika
01.10.2024 - 31.12.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
03.02.2025 - 25.05.2025
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
englanti
Opettajat
Tuomas Valtanen
Vastuuopettaja
Tuomas Valtanen
Ryhmät
R54D22S
Bachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2022
Opintojakso
R504D108

Arviointiasteikko

H-5

Sisällön jaksotus

- Natural language processing machine learning models
- Advanced specialized machine learning algorithms
- Machine learning model optimization tools
- Error metrics and ML model performance evaluation
- Use of suitable tools (e.g., a high-level ML application programming interface, like scikit-learn and TensorFlow) for building solutions

Tavoitteet

- Knowledge and skills to understand beyond-basic contemporary machine learning (ML) models and methods, and to choose and apply them in a principled and sound way
- Abilities for understanding connections to, and dependencies between, model/method properties and timely topics (e.g., ethics, sustainability, explainability).
- Abilities to solve a computational problem via machine learning without using a high-level ML application programming interface

Sisältö

- Theory and practice of the beyond-basic contemporary machine learning (ML) models and methods
- Use of suitable tools (e.g., an ML application programming interface enabling both high and low level expression) for building solutions

Aika ja paikka

Lapland University of Applied Sciences, Rantavitikka Campus, 13.1.2025 - 15.5.2025.

Opetusmenetelmät

Lectures, workshops, examples, exercises and self-supervised work.

Tenttien ajankohdat ja uusintamahdollisuudet

The course will be graded based on personal work and exercises.

Arviointikriteerit, tyydyttävä (1)

Grade 1: The student knows the theory on the considered ML models and methods. The student is able to solve beyond-basic contemporary ML problems, using the considered tools.

Arviointikriteerit, hyvä (3)

Grade 3: The student understand the theory on the considered ML models and methods. The student is able to solve a variety of beyond-basic contemporary ML problems, using the considered tools, suitably.

Arviointikriteerit, kiitettävä (5)

Grade 5: The student understand the theory on the considered ML models and methods. The student is able to solve a variety of beyond-basic contemporary ML problems, using the considered tools, most suitably.

Esitietovaatimukset

Introduction to Machine Learning Methods

Siirry alkuun