Edistyneet koneoppimisen menetelmät (5 op)
Toteutuksen tunnus: R504D108-3001
Toteutuksen perustiedot
- Ilmoittautumisaika
-
01.10.2024 - 31.12.2024
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
03.02.2025 - 25.05.2025
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Insinöörikoulutus, tieto- ja viestintätekniikka
- Opetuskielet
- englanti
- Opettajat
- Tuomas Valtanen
- Vastuuopettaja
- Tuomas Valtanen
- Ryhmät
-
R54D22SBachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2022
- Opintojakso
- R504D108
Arviointiasteikko
H-5
Sisällön jaksotus
- Natural language processing machine learning models
- Advanced specialized machine learning algorithms
- Machine learning model optimization tools
- Error metrics and ML model performance evaluation
- Use of suitable tools (e.g., a high-level ML application programming interface, like scikit-learn and TensorFlow) for building solutions
Tavoitteet
- Knowledge and skills to understand beyond-basic contemporary machine learning (ML) models and methods, and to choose and apply them in a principled and sound way
- Abilities for understanding connections to, and dependencies between, model/method properties and timely topics (e.g., ethics, sustainability, explainability).
- Abilities to solve a computational problem via machine learning without using a high-level ML application programming interface
Sisältö
- Theory and practice of the beyond-basic contemporary machine learning (ML) models and methods
- Use of suitable tools (e.g., an ML application programming interface enabling both high and low level expression) for building solutions
Aika ja paikka
Lapland University of Applied Sciences, Rantavitikka Campus, 13.1.2025 - 15.5.2025.
Opetusmenetelmät
Lectures, workshops, examples, exercises and self-supervised work.
Tenttien ajankohdat ja uusintamahdollisuudet
The course will be graded based on personal work and exercises.
Arviointikriteerit, tyydyttävä (1)
Grade 1: The student knows the theory on the considered ML models and methods. The student is able to solve beyond-basic contemporary ML problems, using the considered tools.
Arviointikriteerit, hyvä (3)
Grade 3: The student understand the theory on the considered ML models and methods. The student is able to solve a variety of beyond-basic contemporary ML problems, using the considered tools, suitably.
Arviointikriteerit, kiitettävä (5)
Grade 5: The student understand the theory on the considered ML models and methods. The student is able to solve a variety of beyond-basic contemporary ML problems, using the considered tools, most suitably.
Esitietovaatimukset
Introduction to Machine Learning Methods