Siirry suoraan sisältöön

Koneoppimisen pilvipalveluratkaisut (5 op)

Toteutuksen tunnus: R504D120-3002

Toteutuksen perustiedot


Ilmoittautumisaika
01.10.2024 - 31.12.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
03.02.2025 - 30.04.2025
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
englanti
Paikat
0 - 30
Opettajat
Tuomas Valtanen
Vastuuopettaja
Tuomas Valtanen
Ryhmät
R54D23S
Bachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2023
Opintojakso
R504D120

Arviointiasteikko

H-5

Sisällön jaksotus

- Cloud computing in general
- Common cloud environments
- Basics of neural networks and deep learning
- Technological considerations in deep learning
- Basics of image classification and object detection
- Machine learning coding in the cloud
- Other cloud omputing related tools

Tavoitteet

The student is familiar with common machine learning models supported by online platforms for machine learning. The student can create custom machine learning applications in the cloud without having to write complex code.

Sisältö

Machine learning models supported by the largest cloud providers: binary prediction, category prediction and value prediction.

Building, training and deploying machine learning model in the cloud:
- Preparing the data
- Training the model to learn from the data
- Deploying the model
- Evaluate the model's performance

Oppimateriaalit

All needed materials will be collected in the Moodle workspace. New material will be added from the internet as needed, due to the nature of cloud services and their rapid development rate. Documentations and tutorials of used cloud services, for example, Google Cloud, AWS, CSC and/or MS Azure.


Opetusmenetelmät

Lectures and workshops. Practical exercises in classroom.

Tenttien ajankohdat ja uusintamahdollisuudet

The course will be graded based on personal work and exercises

Arviointikriteerit, tyydyttävä (1)

The student can implement a machine learning application in the cloud.

Arviointikriteerit, hyvä (3)

The student can implement machine learning applications in the cloud using different models.

Arviointikriteerit, kiitettävä (5)

The student can implement machine learning applications in the cloud using different models and cloud machine learning services.

Siirry alkuun