Johdatus koneoppimisen menetelmiin (5 op)
Toteutuksen tunnus: R504D123-3002
Toteutuksen perustiedot
- Ilmoittautumisaika
-
01.10.2024 - 12.01.2025
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
13.01.2025 - 09.05.2025
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Insinöörikoulutus, tieto- ja viestintätekniikka
- Opetuskielet
- englanti
- Paikat
- 0 - 30
- Opettajat
- Tuomas Valtanen
- Vastuuopettaja
- Tuomas Valtanen
- Ryhmät
-
R54D23SBachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2023
- Opintojakso
- R504D123
Arviointiasteikko
H-5
Sisällön jaksotus
- Theory and practice of basic ML models and methods for typical tasks encountered in unsupervised and supervised learning
- Common traditional ML algorithms
- Preprocessing data for ML algorithms
- Error metrics and ML model performance evaluation
- Use of suitable tools (e.g., a high-level ML application programming interface, like scikit-learn) for building solutions
Tavoitteet
- Knowledge and skills to understand basic machine learning (ML) models and methods, and to choose and apply them in a principled and sound way in basic tasks
- Abilities for computational thinking that utilizes machine learning, for problem solving
Sisältö
- Theory and practice of basic ML models and methods for typical tasks encountered in at least unsupervised and supervised learning
- Use of suitable tools (e.g., a high-level ML application programming interface) for building solutions
Aika ja paikka
Lapland University of Applied Sciences, Rantavitikka Campus, 13.1.2025 - 15.5.2025.
Oppimateriaalit
Lecture materials and exercises will be placed in the Moodle workspace.
Opetusmenetelmät
Lectures, workshops, examples, exercises and self-supervised work.
Tenttien ajankohdat ja uusintamahdollisuudet
The course will be graded based on personal work and exercises.
Arviointikriteerit, tyydyttävä (1)
Grade 1: The student knows the theory on the considered ML models and methods. The student is able to solve basic ML problems, using the considered tools.
Arviointikriteerit, hyvä (3)
Grade 3: The student understands the theory on the considered ML models and methods. The student is able to solve a variety of basic ML problems, using the considered tools, suitably.
Arviointikriteerit, kiitettävä (5)
Grade 5: The student understands the theory on the considered ML models and methods. The student is able to solve a variety of basic ML problems, using the considered tools, most suitably.