Siirry suoraan sisältöön

Johdatus koneoppimisen menetelmiin (5 op)

Toteutuksen tunnus: R504D123-3002

Toteutuksen perustiedot


Ilmoittautumisaika
01.10.2024 - 12.01.2025
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
13.01.2025 - 09.05.2025
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
englanti
Paikat
0 - 30
Opettajat
Tuomas Valtanen
Vastuuopettaja
Tuomas Valtanen
Ryhmät
R54D23S
Bachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2023
Opintojakso
R504D123

Arviointiasteikko

H-5

Sisällön jaksotus

- Theory and practice of basic ML models and methods for typical tasks encountered in unsupervised and supervised learning
- Common traditional ML algorithms
- Preprocessing data for ML algorithms
- Error metrics and ML model performance evaluation
- Use of suitable tools (e.g., a high-level ML application programming interface, like scikit-learn) for building solutions

Tavoitteet

- Knowledge and skills to understand basic machine learning (ML) models and methods, and to choose and apply them in a principled and sound way in basic tasks
- Abilities for computational thinking that utilizes machine learning, for problem solving

Sisältö

- Theory and practice of basic ML models and methods for typical tasks encountered in at least unsupervised and supervised learning
- Use of suitable tools (e.g., a high-level ML application programming interface) for building solutions

Aika ja paikka

Lapland University of Applied Sciences, Rantavitikka Campus, 13.1.2025 - 15.5.2025.

Oppimateriaalit

Lecture materials and exercises will be placed in the Moodle workspace.


Opetusmenetelmät

Lectures, workshops, examples, exercises and self-supervised work.

Tenttien ajankohdat ja uusintamahdollisuudet

The course will be graded based on personal work and exercises.

Arviointikriteerit, tyydyttävä (1)

Grade 1: The student knows the theory on the considered ML models and methods. The student is able to solve basic ML problems, using the considered tools.

Arviointikriteerit, hyvä (3)

Grade 3: The student understands the theory on the considered ML models and methods. The student is able to solve a variety of basic ML problems, using the considered tools, suitably.

Arviointikriteerit, kiitettävä (5)

Grade 5: The student understands the theory on the considered ML models and methods. The student is able to solve a variety of basic ML problems, using the considered tools, most suitably.

Siirry alkuun