Introduction to Data Analytics (5cr)
Code: R504D119-3003
General information
- Enrollment
- 01.10.2024 - 12.01.2025
- Registration for the implementation has ended.
- Timing
- 13.01.2025 - 09.05.2025
- Implementation has ended.
- Number of ECTS credits allocated
- 5 cr
- Mode of delivery
- Contact learning
- Teaching languages
- English
- Seats
- 0 - 30
Evaluation scale
H-5
Content scheduling
Topics include, but are not limited to:
- Quick Python recap
- NumPy
- pandas
- seaborn and matplotlib
- Data formats and management
- EDA - Exploratory Data Analysis
+ other relevant topics
Objective
The student understands basics of data analytics in data engineering and machine learning. The student acquires knowledge on, and experience with, selected environments and libraries for data analytics. The student is able to utilize them, in e.g., data preparation for machine learning algorithms.
Content
- Data preparation, pre-processing
- Data exploration, analysis; e.g., visual, numerical
- Use of data analytics environments and libraries
Location and time
Lapland University of Applied Sciences, Rantavitikka Campus, 13.1.2025 - 15.5.2025.
Teaching methods
Lectures, workshops, examples, exercises and self-supervised work.
Exam schedules
The course will be graded based on personal work and exercises.
Assessment criteria, satisfactory (1)
Grade 1: The student knows basics of data analytics in data engineering and machine learning. The student is able apply basic data analytics techniques in data engineering and machine learning.
Assessment criteria, good (3)
Grade 3: The student understands basics of data analytics in data engineering and machine learning. The student is able apply a variety of data analytics techniques in data engineering and machine learning, suitably.
Assessment criteria, excellent (5)
Grade 5: The student understands basics of data analytics in data engineering and machine learning. The student is able apply a variety of data analytics techniques in data engineering and machine learning, most suitably.