Syväoppiminen (5 op)
Toteutuksen tunnus: R504D80-3002
Toteutuksen perustiedot
- Ilmoittautumisaika
-
18.03.2024 - 01.09.2024
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
02.09.2024 - 18.12.2024
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Insinöörikoulutus, tieto- ja viestintätekniikka
- Opetuskielet
- englanti
- Paikat
- 0 - 30
- Opettajat
- Tuomas Valtanen
- Vastuuopettaja
- Tuomas Valtanen
- Ryhmät
-
R54D22SBachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2022
- Opintojakso
- R504D80
Arviointiasteikko
H-5
Sisällön jaksotus
- Foundations and theory of neural networks and deep learning
- Working on various types of data and use cases with various neural networks (ANN, MLP, CNN, RNN etc.)
- Techniques to improve neural networks: regularization and optimizations, hyper-parameter tuning and deep learning frameworks
+ other relevant topics
Tavoitteet
The students knows the fundamental concepts of deep learning, including various neural networks for supervised and unsupervised learning. The student can use some popular deep learning libraries applied in real industry problems.
Sisältö
- Linear and non-linear regression, classification
- Foundations of neural networks and deep learning
- Techniques to improve neural networks: regularization and optimizations, hyper-parameter tuning and deep learning frameworks
- Applying deep learning to real-world scenarios such as object recognition and computer vision, image and video processing, text analytics and natural language processing,
Aika ja paikka
Lapland University of Applied Sciences, Rantavitikka Campus, 2.9.2024 - 13.12.2024
Oppimateriaalit
Lecture materials and exercises will be placed in the Moodle workspace.
Opetusmenetelmät
Lectures, workshops, examples, exercises and self-supervised work.
Tenttien ajankohdat ja uusintamahdollisuudet
The course will be graded based on personal work and exercise projects.
Arviointikriteerit, tyydyttävä (1)
The student is familiar with neural networks and related machine learning methods.
Arviointikriteerit, hyvä (3)
The student is familiar with neural networks and related machine learning methods. The student knows how to apply common deep learning frameworks.
Arviointikriteerit, kiitettävä (5)
The student can explain and apply their knowledge of neural networks and related machine learning methods. The student knows how to apply feasible deep learning frameworks for a variety of deep learning applications.
Lisätiedot
-