Edistynyt data-analytiikka (5 op)
Toteutuksen tunnus: R504D104-3001
Toteutuksen perustiedot
- Ilmoittautumisaika
-
18.03.2024 - 15.09.2024
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
16.09.2024 - 18.12.2024
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Insinöörikoulutus, tieto- ja viestintätekniikka
- Opetuskielet
- englanti
- Paikat
- 0 - 30
- Opettajat
- Tuomas Valtanen
- Vastuuopettaja
- Tuomas Valtanen
- Ajoitusryhmät
- Group 1 (Koko: 0 . Avoin AMK : 0.)
- Group 2 (Koko: 0 . Avoin AMK : 0.)
- Ryhmät
-
R54D22SBachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2022
- Pienryhmät
- Group 1
- Group 2
- Opintojakso
- R504D104
Arviointiasteikko
H-5
Sisällön jaksotus
- Optimizing datasets and reducing dimensions (PCA etc.)
- Decision-making strategies for dataset optimizations
- Advanced imputation and managing incomplete data
- Operations and management regarding large and/or complex datasets
- Combining data systems and data harmonization
- Advanced statistical measurements
- Analytics and optimization pipelines
+ other advanced features with common data analytics and machine learning tools
Tavoitteet
The student knows how to perform advanced data analytics and modifications to datasets used by other applications, such as machine learning algorithms. The student is able to inspect and decide suitable methods for different use cases depending on the data structure.
Sisältö
- Optimizing datasets and reducing dimensions
- Decision-making strategies for dataset optimizations
- Advanced imputation and managing incomplete data
- Operations and management regarding large and/or complex datasets
- Combining data systems and data harmonization
- Advanced statistical measurements
- Analytics pipelines
Oppimateriaalit
Lecture materials and exercises will be placed in the Moodle workspace.
Opetusmenetelmät
Lectures, workshops, examples, exercises and self-supervised work.
Tenttien ajankohdat ja uusintamahdollisuudet
The course will be graded based on personal work and exercises.
Arviointikriteerit, tyydyttävä (1)
Grade 1: The student is able to perform selected advanced data analytics operations for a given dataset under guidance. The student has the basic knowledge of different advanced techniques that can be considered for manipulating different datasets.
Arviointikriteerit, hyvä (3)
Grade 3: The student is able to perform selected advanced data analytics operations for a given dataset independently. The student has the basic knowledge of different advanced techniques that can be considered for manipulating different datasets.
Arviointikriteerit, kiitettävä (5)
Grade 5: The student is able to perform various advanced data analytics operations for a given dataset independently. The student has the basic knowledge of different advanced techniques that can be considered for manipulating different datasets. The student is able to search for more advanced data analytics methods and independently apply them to their dataset applications.