Siirry suoraan sisältöön

Edistynyt data-analytiikka (5 op)

Toteutuksen tunnus: R504D104-3001

Toteutuksen perustiedot


Ilmoittautumisaika
18.03.2024 - 15.09.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
16.09.2024 - 18.12.2024
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
englanti
Paikat
0 - 30
Opettajat
Tuomas Valtanen
Vastuuopettaja
Tuomas Valtanen
Ajoitusryhmät
Group 1 (Koko: 0 . Avoin AMK : 0.)
Group 2 (Koko: 0 . Avoin AMK : 0.)
Ryhmät
R54D22S
Bachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2022
Pienryhmät
Group 1
Group 2
Opintojakso
R504D104

Arviointiasteikko

H-5

Sisällön jaksotus

- Optimizing datasets and reducing dimensions (PCA etc.)
- Decision-making strategies for dataset optimizations
- Advanced imputation and managing incomplete data
- Operations and management regarding large and/or complex datasets
- Combining data systems and data harmonization
- Advanced statistical measurements
- Analytics and optimization pipelines
+ other advanced features with common data analytics and machine learning tools

Tavoitteet

The student knows how to perform advanced data analytics and modifications to datasets used by other applications, such as machine learning algorithms. The student is able to inspect and decide suitable methods for different use cases depending on the data structure.

Sisältö

- Optimizing datasets and reducing dimensions
- Decision-making strategies for dataset optimizations
- Advanced imputation and managing incomplete data
- Operations and management regarding large and/or complex datasets
- Combining data systems and data harmonization
- Advanced statistical measurements
- Analytics pipelines

Oppimateriaalit

Lecture materials and exercises will be placed in the Moodle workspace.


Opetusmenetelmät

Lectures, workshops, examples, exercises and self-supervised work.

Tenttien ajankohdat ja uusintamahdollisuudet

The course will be graded based on personal work and exercises.

Arviointikriteerit, tyydyttävä (1)

Grade 1: The student is able to perform selected advanced data analytics operations for a given dataset under guidance. The student has the basic knowledge of different advanced techniques that can be considered for manipulating different datasets.

Arviointikriteerit, hyvä (3)

Grade 3: The student is able to perform selected advanced data analytics operations for a given dataset independently. The student has the basic knowledge of different advanced techniques that can be considered for manipulating different datasets.

Arviointikriteerit, kiitettävä (5)

Grade 5: The student is able to perform various advanced data analytics operations for a given dataset independently. The student has the basic knowledge of different advanced techniques that can be considered for manipulating different datasets. The student is able to search for more advanced data analytics methods and independently apply them to their dataset applications.

Siirry alkuun