Siirry suoraan sisältöön

Syväoppiminen (5 op)

Toteutuksen tunnus: R504D80-3001

Toteutuksen perustiedot


Ilmoittautumisaika
02.10.2023 - 04.02.2024
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
05.02.2024 - 31.05.2024
Toteutus on päättynyt.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
englanti
suomi
Paikat
0 - 30
Opettajat
Tuomas Valtanen
Vastuuopettaja
Tuomas Valtanen
Ryhmät
R54D21S
Bachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2021
Opintojakso
R504D80

Arviointiasteikko

H-5

Sisällön jaksotus

- Linear and non-linear regression, classification
- Foundations of neural networks and deep learning
- Working on various types of data and use cases with neural networks
- Techniques to improve neural networks: regularization and optimizations, hyper-parameter tuning and deep learning frameworks
+ other relevant topics

Tavoitteet

The students knows the fundamental concepts of deep learning, including various neural networks for supervised and unsupervised learning. The student can use some popular deep learning libraries applied in real industry problems.

Sisältö

- Linear and non-linear regression, classification
- Foundations of neural networks and deep learning
- Techniques to improve neural networks: regularization and optimizations, hyper-parameter tuning and deep learning frameworks
- Applying deep learning to real-world scenarios such as object recognition and computer vision, image and video processing, text analytics and natural language processing,

Aika ja paikka

Lapland University of Applied Sciences, Rantavitikka Campus, 8.1.2024 - 15.5.2024

Oppimateriaalit

Lecture materials and exercises will be placed in the Moodle workspace.


Opetusmenetelmät

Lectures, workshops, examples, exercises and self-supervised work.

Tenttien ajankohdat ja uusintamahdollisuudet

The course will be graded based on personal work and exercises.

Arviointikriteerit, tyydyttävä (1)

The student is familiar with neural networks and related machine learning methods.

Arviointikriteerit, hyvä (3)

The student is familiar with neural networks and related machine learning methods. The student knows how to apply common deep learning frameworks.

Arviointikriteerit, kiitettävä (5)

The student can explain and apply their knowledge of neural networks and related machine learning methods. The student knows how to apply feasible deep learning frameworks for a variety of deep learning applications.

Siirry alkuun