Johdatus data-analytiikkaan (5 op)
Toteutuksen tunnus: R504D119-3001
Toteutuksen perustiedot
- Ilmoittautumisaika
-
03.10.2022 - 15.01.2023
Ilmoittautuminen toteutukselle on päättynyt.
- Ajoitus
-
16.01.2023 - 24.05.2023
Toteutus on päättynyt.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- Insinöörikoulutus, tieto- ja viestintätekniikka
- Opetuskielet
- englanti
- Paikat
- 0 - 30
- Koulutus
- Machine Learning and Data Engineering
- Opettajat
- Tuomas Valtanen
- Vastuuopettaja
- Tuomas Valtanen
- Ryhmät
-
R54D22SBachelor of Engineering, Machine Learning and Data Engineering (full time studies), 2022
- Opintojakso
- R504D119
Arviointiasteikko
H-5
Sisällön jaksotus
Topics include, but are not limited to:
- Quick Python recap
- NumPy
- pandas
- seaborn and matplotlib
- Data formats and management
- EDA - Explortaive Data Analysis
+ other relevant topics
Tavoitteet
The student understands basics of data analytics in data engineering and machine learning. The student acquires knowledge on, and experience with, selected environments and libraries for data analytics. The student is able to utilize them, in e.g., data preparation for machine learning algorithms.
Sisältö
- Data preparation, pre-processing
- Data exploration, analysis; e.g., visual, numerical
- Use of data analytics environments and libraries
Aika ja paikka
Lapland University of Applied Sciences, Rantavitikka Campus, 10.1.2023 - 15.5.2023.
Oppimateriaalit
Lecture materials and exercises will be placed in the Moodle workspace.
Opetusmenetelmät
Lectures, workshops, examples, exercises and self-supervised work.
Tenttien ajankohdat ja uusintamahdollisuudet
The course will be graded based on personal work and exercises.
Toteutuksen valinnaiset suoritustavat
For other alternatives on how to pass the course, consult your instructor.
Arviointikriteerit, tyydyttävä (1)
Grade 1: The student knows basics of data analytics in data engineering and machine learning. The student is able apply basic data analytics techniques in data engineering and machine learning.
Arviointikriteerit, hyvä (3)
Grade 3: The student understands basics of data analytics in data engineering and machine learning. The student is able apply a variety of data analytics techniques in data engineering and machine learning, suitably.
Arviointikriteerit, kiitettävä (5)
Grade 5: The student understands basics of data analytics in data engineering and machine learning. The student is able apply a variety of data analytics techniques in data engineering and machine learning, most suitably.