Siirry suoraan sisältöön

Lineaarialgebra (5op)

Toteutuksen tunnus: R504TL106-3001

Toteutuksen perustiedot


Ilmoittautumisaika
14.03.2022 - 29.08.2022
Ilmoittautuminen toteutukselle on päättynyt.
Ajoitus
02.09.2022 - 18.12.2022
Toteutus on päättynyt.
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Opetuskielet
suomi
Paikat
0 - 50
Koulutus
Tieto- ja viestintätekniikan koulutus
Opettajat
Miika Aitomaa
Vastuuopettaja
Miika Aitomaa
Opintojakso
R504TL106

Arviointiasteikko

H-5

Tavoitteet

Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.

Sisältö

- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)

Aika ja paikka

Syyslukukausi 2022, Lapin AMK, Rantavitikan kampus (Rovaniemi, Jokiväylä 11)

Oppimateriaalit

Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristössä.

Suositeltavaa kirjallisuutta esim.
Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy
Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy
Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka

Opetusmenetelmät

Oppitunnit, laskuharjoitukset, itsenäisesti suoritettavat tehtävät

Tenttien ajankohdat ja uusintamahdollisuudet

Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.

Toteutuksen valinnaiset suoritustavat

Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.

Opiskelijan ajankäyttö ja kuormitus

Opintojakson laajuus 5 op vastaa opiskelijan työmäärää n. 135 h

Arviointikriteerit, tyydyttävä (1)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa. 

Siirry alkuun