Siirry suoraan sisältöön

LineaarialgebraLaajuus (5 op)

Tunnus: R504TL106

Laajuus

5 op

Opetuskieli

  • suomi

Osaamistavoitteet

Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.

Sisältö

- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)

Arviointikriteerit, tyydyttävä (1)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa. 

Ilmoittautumisaika

01.10.2024 - 12.01.2025

Ajoitus

13.01.2025 - 23.05.2025

Laajuus

5 op

Virtuaaliosuus (op)

5 op

Toteutustapa

Etäopetus

Yksikkö

Insinöörikoulutus, tieto- ja viestintätekniikka

Opetuskielet
  • Suomi
Paikat

0 - 60

Tutkinto-ohjelma
  • Tieto- ja viestintätekniikan koulutus
Opettaja
  • Leena Palokangas
Vastuuhenkilö

Leena Palokangas

Opiskelijaryhmät
  • RA54T24S
    Tieto- ja viestintätekniikan koulutus (verkko-opinnot), syksy 2024

Tavoitteet

Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.

Sisältö

- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)

Aika ja paikka

Kevätlukukausi 2024.

Verkko-opetuksessa oppimisympäristöinä ovat Moodle ja Zoom. Opetus järjestetään arki-iltaisin klo 17:15 alkaen. Verkko-opetus tallennetaan.

Oppimateriaalit

Tarvittava oppimateriaali on saatavilla Moodlessa opintojakson työtilassa. Oheiskirjallisuutena voi käyttää: J. Henttonen, J. Peltomäki, S. Uusitalo: Tekniikan matematiikka 1 ja 2; A. Tuomenlehto, E. Holmlund, M. Huuskonen, H. Makkonen, J. Surakka: Insinöörin matematiikka.

Opetusmenetelmät

Verkko-opetus Zoom-ympäristössä, valmiit opetusvideot ja talleneet, itsenäisesti suoritettavat tehtävät. Verkko-oppitunneilla varmistetaan opintojakson aihepiirien perusasioiden hallinta teorian ja esimerkkien avulla. Lisäksi opiskelija saa tunneilla ohjausta tehtävien tekoon.
Aiheet on mahdollista opiskella itsenäisesti tallenteiden, esimerkkien ja harjoitustehtävien avulla.

Tenttien ajankohdat ja uusintamahdollisuudet

Kokeen/välikokeiden ajankohdat ja lukumäärä sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.

Toteutuksen valinnaiset suoritustavat

Opintojakson suoritus koostuu arvioitavista tehtävistä ja kokeesta/välikokeista. Itsenäinen suoritus on mahdollinen.

Arviointiasteikko

H-5

Arviointikriteerit, tyydyttävä (1)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa. 

Arviointimenetelmät ja arvioinnin perusteet

Opintojakson arviointi perustuu harjoitustehtävissä ja verkkotentissä/tenteissä annettuun näyttöön osaamisesta opetussuunnitelman mukaisissa tavoitteissa. Noin 50 % arvioinnista perustuu harjoitustehtäviin ja 50 % tenttiin. Arviointiasteikko on 0-5.

Hylätty (0)

Opiskelija ei osoita arvosanaa 1 varten riittävää osaamista.

Arviointikriteerit, tyydyttävä (1-2)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3-4)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisussa. 

Ilmoittautumisaika

01.10.2024 - 12.01.2025

Ajoitus

13.01.2025 - 11.05.2025

Laajuus

5 op

Toteutustapa

Lähiopetus

Yksikkö

Insinöörikoulutus, tieto- ja viestintätekniikka

Opetuskielet
  • Suomi
Paikat

0 - 60

Tutkinto-ohjelma
  • Tieto- ja viestintätekniikan koulutus
Opettaja
  • Juha Vehniäinen
Vastuuhenkilö

Juha Vehniäinen

Opiskelijaryhmät
  • R54T24S
    Tieto- ja viestintätekniikan koulutus (päiväopinnot), syksy 2024

Tavoitteet

Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.

Sisältö

- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)

Aika ja paikka

Kevätlukukausi 2025. Lapin AMK, Rantavitikan kampus (Rovaniemi, Jokiväylä 11)

Oppimateriaalit

Kaikki tarvittava oppimateriaali on saatavilla Moodlessa opintojakson työtilassa.



Oheiskirjallisuutena voi käyttää: J. Henttonen, J. Peltomäki, S. Uusitalo: Tekniikan matematiikka 1 ja 2; A. Tuomenlehto, E. Holmlund, M. Huuskonen, H. Makkonen, J. Surakka: Insinöörin matematiikka.

Opetusmenetelmät

Lähiopetusta noin 48 h. Oppitunneilla varmistetaan opintojakson aihepiirien perusasioiden hallinta teorian ja esimerkkien avulla. Lisäksi opiskelija saa tunneilla ohjausta tehtävien tekoon.

Tenttien ajankohdat ja uusintamahdollisuudet

Tenttien lukumäärä ja ajankohdat sovitaan opintojakson alussa.

Toteutuksen valinnaiset suoritustavat

Opintojakson suoritus koostuu arvioitavista tehtävistä ja tenteistä. Itsenäinen suoritus on mahdollinen.

Arviointiasteikko

H-5

Arviointikriteerit, tyydyttävä (1)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa. 

Arviointimenetelmät ja arvioinnin perusteet

Opintojakson arviointi perustuu harjoitustehtävissä ja verkkotentissä annettuun näyttöön osaamisesta opetussuunnitelman mukaisissa tavoitteissa. Noin 50 % arvioinnista perustuu harjoitustehtäviin ja 50 % tenttiin/tentteihin. Arviointiasteikko on 0-5.

Ilmoittautumisaika

18.03.2024 - 25.08.2024

Ajoitus

26.08.2024 - 10.11.2024

Laajuus

5 op

Toteutustapa

Lähiopetus

Yksikkö

Insinöörikoulutus, tieto- ja viestintätekniikka

Opetuskielet
  • Suomi
Paikat

0 - 60

Tutkinto-ohjelma
  • Tieto- ja viestintätekniikan koulutus
Opettaja
  • Miika Aitomaa
Vastuuhenkilö

Miika Aitomaa

Opiskelijaryhmät
  • R54T23S
    Tieto- ja viestintätekniikan koulutus (päiväopinnot), syksy 2023

Tavoitteet

Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.

Sisältö

- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)

Aika ja paikka

Syyslukukausi 2024, Lapin AMK, Rantavitikan kampus (Rovaniemi, Jokiväylä 11)

Oppimateriaalit

Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristön kautta. Suositeltavaa kirjallisuutta esim. Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka

Opetusmenetelmät

Oppitunnit, laskuharjoitukset, itsenäisesti suoritettavat tehtävät

Tenttien ajankohdat ja uusintamahdollisuudet

Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.

Toteutuksen valinnaiset suoritustavat

Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.

Arviointiasteikko

H-5

Arviointikriteerit, tyydyttävä (1)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa. 

Arviointimenetelmät ja arvioinnin perusteet

Osaamisen arviointi perustuu arvioitaviin kokeisiin ja harjoitustehtäviin. Lisäksi, jos mahdollista, peliprojektityöskentelyn osuus opintojaksoon sisältöihin liittyvissä asioissa voidaan huomioida arvoinnissa. Tarkempi painotus sovitaan opintojakson alussa.

Hylätty (0)

Opiskelija ei osoita riittävää osaamista arvosanaa 1 varten.

Arviointikriteerit, tyydyttävä (1-2)

Opiskelija ymmärtää lineaarialgebran peruskäsitteet vektoreista ja matriiseista, ja osaa ratkaista lineaarialgebraan liittyviä perustehtäviä, kuten vektorien ja matriisien peruslaskutoimituksia ja yhtälöpareja.

Arviointikriteerit, hyvä (3-4)

Opiskelija hallitsee lineaarialgebran käsitteitä laajasti, kuten vektorien eri esitysmuodot, yhdensuuntaisuuden, lineaarikombinaatiot sekä vektorien kertolaskut. Opiskelija osaa ratkaista monipuolisesti lineaarialgebran vektoreihin liittyviä tehtäviä ja geometrisiä ongelmia, sekä ratkaista lineaarisen yhtälöryhmän useammalla kuin yhdellä tavalla, ja osaa hyödyntää käsitteitä pelimoottoreissa.

Opiskelija käyttää täsmällistä matemaattista kieltä ja osaa muodostaa loogisesti eteneviä ratkaisuja.

Arviointikriteerit, kiitettävä (5)

Opiskelija osaa soveltaa lineaarialgebraan liittyviä menetelmiä uudentyyppisten tehtävien ja ongelmien ratkaisemisessa. Opiskelijan matemaattinen kieli on virheetöntä ja selkeää.

Ilmoittautumisaika

18.03.2024 - 18.08.2024

Ajoitus

19.08.2024 - 10.11.2024

Laajuus

5 op

Virtuaaliosuus (op)

5 op

Toteutustapa

Etäopetus

Yksikkö

Insinöörikoulutus, tieto- ja viestintätekniikka

Opetuskielet
  • Suomi
Paikat

0 - 50

Tutkinto-ohjelma
  • Tieto- ja viestintätekniikan koulutus
Opettaja
  • Miika Aitomaa
Vastuuhenkilö

Miika Aitomaa

Opiskelijaryhmät
  • RA54T23S
    Tieto- ja viestintätekniikan koulutus (verkko-opinnot), syksy 2023

Tavoitteet

Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.

Sisältö

- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)

Aika ja paikka

Syyslukukausi 2024, Lapin AMK, verkko-opetus

Oppimateriaalit

Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristössä. Suositeltavaa kirjallisuutta esim. Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka

Opetusmenetelmät

Etäoppitunnit, valmiit opetusvideot ja talleneet, itsenäisesti suoritettavat tehtävät

Tenttien ajankohdat ja uusintamahdollisuudet

Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.

Toteutuksen valinnaiset suoritustavat

Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.

Sisällön jaksotus

Etäopetus 4 kertaa (Zoom), muuten valmiit opetusvideot + mahdollinen tentti / välikokeet

Arviointiasteikko

H-5

Arviointikriteerit, tyydyttävä (1)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa. 

Arviointimenetelmät ja arvioinnin perusteet

Osaamisen arviointi perustuu lähtökohtaisesti arvioitaviin kokeisiin ja palautettaviin harjoitustehtäviin. Tarkempi painotus sovitaan opintojakson alussa.

Hylätty (0)

Opiskelija ei osoita arvosanaa 1 varten riittävää osaamista.

Arviointikriteerit, tyydyttävä (1-2)

Opiskelija ymmärtää lineaarialgebran peruskäsitteet vektoreista ja matriiseista, ja osaa ratkaista lineaarialgebraan liittyviä perustehtäviä, kuten vektorien ja matriisien peruslaskutoimituksia ja yhtälöpareja.

Arviointikriteerit, hyvä (3-4)

Opiskelija hallitsee lineaarialgebran käsitteitä laajasti, kuten vektorien eri esitysmuodot, yhdensuuntaisuuden, lineaarikombinaatiot sekä vektorien kertolaskut. Opiskelija osaa ratkaista monipuolisesti lineaarialgebran vektoreihin liittyviä tehtäviä ja geometrisiä ongelmia, sekä ratkaista lineaarisen yhtälöryhmän useammalla kuin yhdellä tavalla, ja osaa hyödyntää käsitteitä pelimoottoreissa.

Opiskelija käyttää täsmällistä matemaattista kieltä ja osaa muodostaa loogisesti eteneviä ratkaisuja.

Arviointikriteerit, kiitettävä (5)

Opiskelija osaa soveltaa lineaarialgebraan liittyviä menetelmiä uudentyyppisten tehtävien ja ongelmien ratkaisemisessa. Opiskelijan matemaattinen kieli on virheetöntä ja selkeää.

Ilmoittautumisaika

13.03.2023 - 31.08.2023

Ajoitus

01.09.2023 - 17.12.2023

Laajuus

5 op

Toteutustapa

Lähiopetus

Yksikkö

Insinöörikoulutus, tieto- ja viestintätekniikka

Opetuskielet
  • Suomi
Paikat

0 - 50

Tutkinto-ohjelma
  • Tieto- ja viestintätekniikan koulutus
Opettaja
  • Miika Aitomaa
Vastuuhenkilö

Miika Aitomaa

Opiskelijaryhmät
  • R54T22S
    Tieto- ja viestintätekniikan koulutus (päiväopinnot), syksy 2022

Tavoitteet

Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.

Sisältö

- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)

Aika ja paikka

Syyslukukausi 2023, Lapin AMK, Rantavitikan kampus (Rovaniemi, Jokiväylä 11)

Oppimateriaalit

Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristön kautta.

Suositeltavaa kirjallisuutta esim.
Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy
Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy
Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka

Opetusmenetelmät

Oppitunnit, laskuharjoitukset, itsenäisesti suoritettavat tehtävät

Tenttien ajankohdat ja uusintamahdollisuudet

Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.

Toteutuksen valinnaiset suoritustavat

Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.

Arviointiasteikko

H-5

Arviointikriteerit, tyydyttävä (1)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa. 

Arviointimenetelmät ja arvioinnin perusteet

Osaamisen arviointi perustuu arvioitaviin kokeisiin ja harjoitustehtäviin. Lisäksi, jos mahdollista, peliprojektityöskentelyn osuus opintojaksoon sisältöihin liittyvissä asioissa voidaan huomioida arvoinnissa. Tarkempi painotus sovitaan opintojakson alussa.

Hylätty (0)

Opiskelija ei osoita riittävää osaamista arvosanaa 1 varten.

Arviointikriteerit, tyydyttävä (1-2)

Opiskelija tietää lineaarialgebran käsitteet ja osaa ratkaista lineaarialgebraan liittyviä perustehtäviä.

Arviointikriteerit, hyvä (3-4)

Opiskelija hallitsee lineaarialgebran käsittee, osaa ratkaista monipuolisesti lineaarialgebran tehtäviä ja osaa hyödyntää käsitteitä esimerkiksi pelimoottoreissa.

Arviointikriteerit, kiitettävä (5)

Opiskelija osaa soveltaa lineaarialgebraan liittyviä menetelmiä uudentyyppisten tehtävien ja ongelmien ratkaisemisessa.

Ilmoittautumisaika

13.03.2023 - 31.08.2023

Ajoitus

01.09.2023 - 18.12.2023

Laajuus

5 op

Virtuaaliosuus (op)

5 op

Toteutustapa

Etäopetus

Yksikkö

Insinöörikoulutus, tieto- ja viestintätekniikka

Opetuskielet
  • Suomi
Paikat

0 - 60

Tutkinto-ohjelma
  • Tieto- ja viestintätekniikan koulutus
Opettaja
  • Miika Aitomaa
Vastuuhenkilö

Miika Aitomaa

Opiskelijaryhmät
  • RA54T22S
    Tieto- ja viestintätekniikan koulutus (verkko-opinnot), syksy 2022

Tavoitteet

Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.

Sisältö

- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)

Aika ja paikka

Syyslukukausi 2023, Lapin AMK, Rantavitikan kampus (etäopetus)

Oppimateriaalit

Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristössä. Suositeltavaa kirjallisuutta esim. Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka

Opetusmenetelmät

Etäoppitunnit, itsenäisesti suoritettavat tehtävät

Tenttien ajankohdat ja uusintamahdollisuudet

Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.

Toteutuksen valinnaiset suoritustavat

Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.

Sisällön jaksotus

Etäopetus 9 kertaa (Zoom) + mahdollinen tentti / välikokeet

Arviointiasteikko

H-5

Arviointikriteerit, tyydyttävä (1)

Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa. 

Arviointimenetelmät ja arvioinnin perusteet

Osaamisen arviointi perustuu lähtökohtaisesti arvioitaviin kokeisiin ja palautettaviin harjoitustehtäviin. Tarkempi painotus sovitaan opintojakson alussa.

Hylätty (0)

Opiskelija ei osoita arvosanaa 1 varten riittävää osaamista.

Arviointikriteerit, tyydyttävä (1-2)

Opiskelija tietää käsitteet ja osaa ratkaista lineaarialgebraan liittyviä perustehtäviä.

Arviointikriteerit, hyvä (3-4)

Opiskelija osaa ratkaista monipuolisesti lineaarialgebran sovellustehtäviä.

Arviointikriteerit, kiitettävä (5)

Opiskelija osaa soveltaa lineaarialgebraan liittyviä menetelmiä uudentyyppisten tehtävien ja ongelmien ratkaisemisessa.