LineaarialgebraLaajuus (5 op)
Tunnus: R504TL106
Laajuus
5 op
Opetuskieli
- suomi
Osaamistavoitteet
Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.
Sisältö
- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)
Arviointikriteerit, tyydyttävä (1)
Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.
Arviointikriteerit, hyvä (3)
Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.
Arviointikriteerit, kiitettävä (5)
Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa.
Ilmoittautumisaika
01.10.2024 - 12.01.2025
Ajoitus
13.01.2025 - 23.05.2025
Laajuus
5 op
Virtuaaliosuus (op)
5 op
Toteutustapa
Etäopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
- Suomi
Paikat
0 - 60
Tutkinto-ohjelma
- Tieto- ja viestintätekniikan koulutus
Opettaja
- Leena Palokangas
Vastuuhenkilö
Leena Palokangas
Opiskelijaryhmät
-
RA54T24STieto- ja viestintätekniikan koulutus (verkko-opinnot), syksy 2024
Tavoitteet
Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.
Sisältö
- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)
Aika ja paikka
Kevätlukukausi 2024.
Verkko-opetuksessa oppimisympäristöinä ovat Moodle ja Zoom. Opetus järjestetään arki-iltaisin klo 17:15 alkaen. Verkko-opetus tallennetaan.
Oppimateriaalit
Tarvittava oppimateriaali on saatavilla Moodlessa opintojakson työtilassa. Oheiskirjallisuutena voi käyttää: J. Henttonen, J. Peltomäki, S. Uusitalo: Tekniikan matematiikka 1 ja 2; A. Tuomenlehto, E. Holmlund, M. Huuskonen, H. Makkonen, J. Surakka: Insinöörin matematiikka.
Opetusmenetelmät
Verkko-opetus Zoom-ympäristössä, valmiit opetusvideot ja talleneet, itsenäisesti suoritettavat tehtävät. Verkko-oppitunneilla varmistetaan opintojakson aihepiirien perusasioiden hallinta teorian ja esimerkkien avulla. Lisäksi opiskelija saa tunneilla ohjausta tehtävien tekoon.
Aiheet on mahdollista opiskella itsenäisesti tallenteiden, esimerkkien ja harjoitustehtävien avulla.
Tenttien ajankohdat ja uusintamahdollisuudet
Kokeen/välikokeiden ajankohdat ja lukumäärä sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.
Toteutuksen valinnaiset suoritustavat
Opintojakson suoritus koostuu arvioitavista tehtävistä ja kokeesta/välikokeista. Itsenäinen suoritus on mahdollinen.
Arviointiasteikko
H-5
Arviointikriteerit, tyydyttävä (1)
Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.
Arviointikriteerit, hyvä (3)
Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.
Arviointikriteerit, kiitettävä (5)
Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakson arviointi perustuu harjoitustehtävissä ja verkkotentissä/tenteissä annettuun näyttöön osaamisesta opetussuunnitelman mukaisissa tavoitteissa. Noin 50 % arvioinnista perustuu harjoitustehtäviin ja 50 % tenttiin. Arviointiasteikko on 0-5.
Hylätty (0)
Opiskelija ei osoita arvosanaa 1 varten riittävää osaamista.
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.
Arviointikriteerit, hyvä (3-4)
Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.
Arviointikriteerit, kiitettävä (5)
Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisussa.
Ilmoittautumisaika
01.10.2024 - 12.01.2025
Ajoitus
13.01.2025 - 11.05.2025
Laajuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
- Suomi
Paikat
0 - 60
Tutkinto-ohjelma
- Tieto- ja viestintätekniikan koulutus
Opettaja
- Juha Vehniäinen
Vastuuhenkilö
Juha Vehniäinen
Opiskelijaryhmät
-
R54T24STieto- ja viestintätekniikan koulutus (päiväopinnot), syksy 2024
Tavoitteet
Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.
Sisältö
- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)
Aika ja paikka
Kevätlukukausi 2025. Lapin AMK, Rantavitikan kampus (Rovaniemi, Jokiväylä 11)
Oppimateriaalit
Kaikki tarvittava oppimateriaali on saatavilla Moodlessa opintojakson työtilassa.
Oheiskirjallisuutena voi käyttää: J. Henttonen, J. Peltomäki, S. Uusitalo: Tekniikan matematiikka 1 ja 2; A. Tuomenlehto, E. Holmlund, M. Huuskonen, H. Makkonen, J. Surakka: Insinöörin matematiikka.
Opetusmenetelmät
Lähiopetusta noin 48 h. Oppitunneilla varmistetaan opintojakson aihepiirien perusasioiden hallinta teorian ja esimerkkien avulla. Lisäksi opiskelija saa tunneilla ohjausta tehtävien tekoon.
Tenttien ajankohdat ja uusintamahdollisuudet
Tenttien lukumäärä ja ajankohdat sovitaan opintojakson alussa.
Toteutuksen valinnaiset suoritustavat
Opintojakson suoritus koostuu arvioitavista tehtävistä ja tenteistä. Itsenäinen suoritus on mahdollinen.
Arviointiasteikko
H-5
Arviointikriteerit, tyydyttävä (1)
Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.
Arviointikriteerit, hyvä (3)
Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.
Arviointikriteerit, kiitettävä (5)
Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa.
Arviointimenetelmät ja arvioinnin perusteet
Opintojakson arviointi perustuu harjoitustehtävissä ja verkkotentissä annettuun näyttöön osaamisesta opetussuunnitelman mukaisissa tavoitteissa. Noin 50 % arvioinnista perustuu harjoitustehtäviin ja 50 % tenttiin/tentteihin. Arviointiasteikko on 0-5.
Ilmoittautumisaika
18.03.2024 - 25.08.2024
Ajoitus
26.08.2024 - 10.11.2024
Laajuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
- Suomi
Paikat
0 - 60
Tutkinto-ohjelma
- Tieto- ja viestintätekniikan koulutus
Opettaja
- Miika Aitomaa
Vastuuhenkilö
Miika Aitomaa
Opiskelijaryhmät
-
R54T23STieto- ja viestintätekniikan koulutus (päiväopinnot), syksy 2023
Tavoitteet
Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.
Sisältö
- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)
Aika ja paikka
Syyslukukausi 2024, Lapin AMK, Rantavitikan kampus (Rovaniemi, Jokiväylä 11)
Oppimateriaalit
Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristön kautta. Suositeltavaa kirjallisuutta esim. Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka
Opetusmenetelmät
Oppitunnit, laskuharjoitukset, itsenäisesti suoritettavat tehtävät
Tenttien ajankohdat ja uusintamahdollisuudet
Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.
Toteutuksen valinnaiset suoritustavat
Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.
Arviointiasteikko
H-5
Arviointikriteerit, tyydyttävä (1)
Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.
Arviointikriteerit, hyvä (3)
Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.
Arviointikriteerit, kiitettävä (5)
Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa.
Arviointimenetelmät ja arvioinnin perusteet
Osaamisen arviointi perustuu arvioitaviin kokeisiin ja harjoitustehtäviin. Lisäksi, jos mahdollista, peliprojektityöskentelyn osuus opintojaksoon sisältöihin liittyvissä asioissa voidaan huomioida arvoinnissa. Tarkempi painotus sovitaan opintojakson alussa.
Hylätty (0)
Opiskelija ei osoita riittävää osaamista arvosanaa 1 varten.
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija ymmärtää lineaarialgebran peruskäsitteet vektoreista ja matriiseista, ja osaa ratkaista lineaarialgebraan liittyviä perustehtäviä, kuten vektorien ja matriisien peruslaskutoimituksia ja yhtälöpareja.
Arviointikriteerit, hyvä (3-4)
Opiskelija hallitsee lineaarialgebran käsitteitä laajasti, kuten vektorien eri esitysmuodot, yhdensuuntaisuuden, lineaarikombinaatiot sekä vektorien kertolaskut. Opiskelija osaa ratkaista monipuolisesti lineaarialgebran vektoreihin liittyviä tehtäviä ja geometrisiä ongelmia, sekä ratkaista lineaarisen yhtälöryhmän useammalla kuin yhdellä tavalla, ja osaa hyödyntää käsitteitä pelimoottoreissa.
Opiskelija käyttää täsmällistä matemaattista kieltä ja osaa muodostaa loogisesti eteneviä ratkaisuja.
Arviointikriteerit, kiitettävä (5)
Opiskelija osaa soveltaa lineaarialgebraan liittyviä menetelmiä uudentyyppisten tehtävien ja ongelmien ratkaisemisessa. Opiskelijan matemaattinen kieli on virheetöntä ja selkeää.
Ilmoittautumisaika
18.03.2024 - 18.08.2024
Ajoitus
19.08.2024 - 10.11.2024
Laajuus
5 op
Virtuaaliosuus (op)
5 op
Toteutustapa
Etäopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
- Suomi
Paikat
0 - 50
Tutkinto-ohjelma
- Tieto- ja viestintätekniikan koulutus
Opettaja
- Miika Aitomaa
Vastuuhenkilö
Miika Aitomaa
Opiskelijaryhmät
-
RA54T23STieto- ja viestintätekniikan koulutus (verkko-opinnot), syksy 2023
Tavoitteet
Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.
Sisältö
- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)
Aika ja paikka
Syyslukukausi 2024, Lapin AMK, verkko-opetus
Oppimateriaalit
Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristössä. Suositeltavaa kirjallisuutta esim. Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka
Opetusmenetelmät
Etäoppitunnit, valmiit opetusvideot ja talleneet, itsenäisesti suoritettavat tehtävät
Tenttien ajankohdat ja uusintamahdollisuudet
Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.
Toteutuksen valinnaiset suoritustavat
Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.
Sisällön jaksotus
Etäopetus 4 kertaa (Zoom), muuten valmiit opetusvideot + mahdollinen tentti / välikokeet
Arviointiasteikko
H-5
Arviointikriteerit, tyydyttävä (1)
Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.
Arviointikriteerit, hyvä (3)
Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.
Arviointikriteerit, kiitettävä (5)
Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa.
Arviointimenetelmät ja arvioinnin perusteet
Osaamisen arviointi perustuu lähtökohtaisesti arvioitaviin kokeisiin ja palautettaviin harjoitustehtäviin. Tarkempi painotus sovitaan opintojakson alussa.
Hylätty (0)
Opiskelija ei osoita arvosanaa 1 varten riittävää osaamista.
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija ymmärtää lineaarialgebran peruskäsitteet vektoreista ja matriiseista, ja osaa ratkaista lineaarialgebraan liittyviä perustehtäviä, kuten vektorien ja matriisien peruslaskutoimituksia ja yhtälöpareja.
Arviointikriteerit, hyvä (3-4)
Opiskelija hallitsee lineaarialgebran käsitteitä laajasti, kuten vektorien eri esitysmuodot, yhdensuuntaisuuden, lineaarikombinaatiot sekä vektorien kertolaskut. Opiskelija osaa ratkaista monipuolisesti lineaarialgebran vektoreihin liittyviä tehtäviä ja geometrisiä ongelmia, sekä ratkaista lineaarisen yhtälöryhmän useammalla kuin yhdellä tavalla, ja osaa hyödyntää käsitteitä pelimoottoreissa.
Opiskelija käyttää täsmällistä matemaattista kieltä ja osaa muodostaa loogisesti eteneviä ratkaisuja.
Arviointikriteerit, kiitettävä (5)
Opiskelija osaa soveltaa lineaarialgebraan liittyviä menetelmiä uudentyyppisten tehtävien ja ongelmien ratkaisemisessa. Opiskelijan matemaattinen kieli on virheetöntä ja selkeää.
Ilmoittautumisaika
13.03.2023 - 31.08.2023
Ajoitus
01.09.2023 - 17.12.2023
Laajuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
- Suomi
Paikat
0 - 50
Tutkinto-ohjelma
- Tieto- ja viestintätekniikan koulutus
Opettaja
- Miika Aitomaa
Vastuuhenkilö
Miika Aitomaa
Opiskelijaryhmät
-
R54T22STieto- ja viestintätekniikan koulutus (päiväopinnot), syksy 2022
Tavoitteet
Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.
Sisältö
- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)
Aika ja paikka
Syyslukukausi 2023, Lapin AMK, Rantavitikan kampus (Rovaniemi, Jokiväylä 11)
Oppimateriaalit
Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristön kautta.
Suositeltavaa kirjallisuutta esim.
Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy
Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy
Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka
Opetusmenetelmät
Oppitunnit, laskuharjoitukset, itsenäisesti suoritettavat tehtävät
Tenttien ajankohdat ja uusintamahdollisuudet
Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.
Toteutuksen valinnaiset suoritustavat
Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.
Arviointiasteikko
H-5
Arviointikriteerit, tyydyttävä (1)
Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.
Arviointikriteerit, hyvä (3)
Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.
Arviointikriteerit, kiitettävä (5)
Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa.
Arviointimenetelmät ja arvioinnin perusteet
Osaamisen arviointi perustuu arvioitaviin kokeisiin ja harjoitustehtäviin. Lisäksi, jos mahdollista, peliprojektityöskentelyn osuus opintojaksoon sisältöihin liittyvissä asioissa voidaan huomioida arvoinnissa. Tarkempi painotus sovitaan opintojakson alussa.
Hylätty (0)
Opiskelija ei osoita riittävää osaamista arvosanaa 1 varten.
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija tietää lineaarialgebran käsitteet ja osaa ratkaista lineaarialgebraan liittyviä perustehtäviä.
Arviointikriteerit, hyvä (3-4)
Opiskelija hallitsee lineaarialgebran käsittee, osaa ratkaista monipuolisesti lineaarialgebran tehtäviä ja osaa hyödyntää käsitteitä esimerkiksi pelimoottoreissa.
Arviointikriteerit, kiitettävä (5)
Opiskelija osaa soveltaa lineaarialgebraan liittyviä menetelmiä uudentyyppisten tehtävien ja ongelmien ratkaisemisessa.
Ilmoittautumisaika
13.03.2023 - 31.08.2023
Ajoitus
01.09.2023 - 18.12.2023
Laajuus
5 op
Virtuaaliosuus (op)
5 op
Toteutustapa
Etäopetus
Yksikkö
Insinöörikoulutus, tieto- ja viestintätekniikka
Opetuskielet
- Suomi
Paikat
0 - 60
Tutkinto-ohjelma
- Tieto- ja viestintätekniikan koulutus
Opettaja
- Miika Aitomaa
Vastuuhenkilö
Miika Aitomaa
Opiskelijaryhmät
-
RA54T22STieto- ja viestintätekniikan koulutus (verkko-opinnot), syksy 2022
Tavoitteet
Opiskelija tuntee lineaarialgebran perusperiaatteet ja –menetelmät ja osaa soveltaa niitä. Opiskelija osaa hyödyntää lineaarialgebran menetelmiä ammattialaansa liittyvissä ongelmissa.
Sisältö
- Kompleksiluvut
- Matriisit ja determinantit
- Yhtälöryhmät
- Trigonometria
- Vektorit
- Analyyttinen geometria (lähinnä suorat)
Aika ja paikka
Syyslukukausi 2023, Lapin AMK, Rantavitikan kampus (etäopetus)
Oppimateriaalit
Tarvittava oppimateriaali on saatavilla Moodle verkko-oppimisympäristössä. Suositeltavaa kirjallisuutta esim. Tuomenlehto, A., Holmlund, E., Huuskonen, M., Makkonen, H., Surakka, J. 2021. INSINÖÖRIN MATEMATIIKKA. Edita Publishing Oy Henttonen, J., Peltomäki, J., Uusitalo, S. 2007 tai uudempi. TEKNIIKAN MATEMATIIKKA 1. Edita Publishing Oy Alestalo, S., Lehtola, P., Nieminen, T., Rantakaulio, A. 2011. TEKNINEN MATEMATIIKKA 1. Amk-Kustannus Oy Tammertekniikka
Opetusmenetelmät
Etäoppitunnit, itsenäisesti suoritettavat tehtävät
Tenttien ajankohdat ja uusintamahdollisuudet
Kokeiden määrä ja ajankohdat sovitaan opintojaksolla. Opintojakson uusintatenttiminen on mahdollista opintojakson toteutusta seuraavan lukukauden loppuun mennessä.
Toteutuksen valinnaiset suoritustavat
Opintojakson itsenäinen suorittaminen on mahdollista. Arvioitavat suoritukset tulee olla palautettuna määräaikaan mennessä.
Sisällön jaksotus
Etäopetus 9 kertaa (Zoom) + mahdollinen tentti / välikokeet
Arviointiasteikko
H-5
Arviointikriteerit, tyydyttävä (1)
Opiskelija tietää käsitteet. Hän osaa käyttää lineaarialgebran perusmenetelmiä ja ratkaista niiden avulla selkeästi määriteltyjä sovellustehtäviä.
Arviointikriteerit, hyvä (3)
Opiskelija ymmärtää käsitteet. Hän osaa valita erilaisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä ja ratkaista ongelmia niiden avulla.
Arviointikriteerit, kiitettävä (5)
Opiskelija ymmärtää käsitteet. Hän osaa valita uudentyyppisiin tehtäviin soveltuvia lineaarialgebran perusmenetelmiä. Hän osaa hyödyntää matemaattisia menetelmiä monipuolisesti alaansa liittyvien ongelmien ratkaisuissa.
Arviointimenetelmät ja arvioinnin perusteet
Osaamisen arviointi perustuu lähtökohtaisesti arvioitaviin kokeisiin ja palautettaviin harjoitustehtäviin. Tarkempi painotus sovitaan opintojakson alussa.
Hylätty (0)
Opiskelija ei osoita arvosanaa 1 varten riittävää osaamista.
Arviointikriteerit, tyydyttävä (1-2)
Opiskelija tietää käsitteet ja osaa ratkaista lineaarialgebraan liittyviä perustehtäviä.
Arviointikriteerit, hyvä (3-4)
Opiskelija osaa ratkaista monipuolisesti lineaarialgebran sovellustehtäviä.
Arviointikriteerit, kiitettävä (5)
Opiskelija osaa soveltaa lineaarialgebraan liittyviä menetelmiä uudentyyppisten tehtävien ja ongelmien ratkaisemisessa.